If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-18a-316=0
a = 1; b = -18; c = -316;
Δ = b2-4ac
Δ = -182-4·1·(-316)
Δ = 1588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1588}=\sqrt{4*397}=\sqrt{4}*\sqrt{397}=2\sqrt{397}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{397}}{2*1}=\frac{18-2\sqrt{397}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{397}}{2*1}=\frac{18+2\sqrt{397}}{2} $
| X=-9-3(4x-1)+9x+8x | | d+d=54-2 | | 9x+8=5x=48 | | -50x+1500=25x+825 | | 9x^2-12= | | 7*5^x-5^x+1=2*5^-3 | | 5n+n2=6 | | 4x-7=63-3x | | 5n+n2=0 | | 5p-8=2p+7 | | -9x-0x-1x+x+0=0 | | 2(-5x-7)=-64 | | x-1/2=3x+1/4 | | 5(-1x+9)=15 | | 5(-5x-7)=-64 | | 2(10+7x)=48 | | 2(x-1)-3(x-2)=-(2x-5) | | 49x+33=49x38 | | x+3=-5x+21 | | 2x-6x2=0 | | 4x+2=7x-22 | | 1.5x+2(60-x)=60 | | -3+4x+3x=-66 | | 5+x/24=-2 | | 4x÷5+6=7x÷5+10 | | 19=5x+2x+5 | | 2+2x+2x=2 | | 6x−18=90 | | (4t+5)X=6 | | -11=-2x+3x-3 | | 2x-(3/3)=3x-(1/6) | | -93=5x+3x+3 |